Share Email Print

Proceedings Paper

Efficient, square-centimetre inverted organic solar cell using a metal grid coated transparent electrode (Conference Presentation)

Paper Abstract

The power conversion efficiencies (PCEs) of bulk heterojunction organic photovoltaic (OPV) devices have been reported more than 10%. Recently, in our group, we have achieved a PCE of greater than 11% with an inverted device geometry (device area 0.1 cm2) using a ternary blend comprising, an organic donor polymer, small molecule, and PC71BM, as an active layer. However, the device performance of OSC suffers significant drop with the device area scaling up due to sheet resistance of transparent electrode. In this work, we have used a thin layer of metal grid on top of transparent electrode to reduce the sheet resistance. Using this strategy, we fabricated inverted organic photovoltaic devices with an active layer composed of a ternary blend of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-co-3-fluorothieno[3,4-b] thiophene-2-carboxylate] (PTB7-Th) and small molecule (BTR)1 as the donors and PC71BM as the acceptor and we have achieved the PCE of greater than 8% for square centimetre active area devices. We also studied the role of metal grid thickness as well as geometry and annealing of active layer on the performance of OSCs. 1. K. Sun, Z. Xiao, S. Lu, W. Zajaczkowski, W. Pisula, E. Hanssen, J. M. White, R. M. Williamson, J. Subbiah, J. Ouyang, A. B. Holmes, W. W. H. Wong, D. J. Jones, Nat. Commun. 2015. (DOI: 10.1038/ncomms7013).

Paper Details

Date Published: 2 November 2016
PDF: 1 pages
Proc. SPIE 9942, Organic Photovoltaics XVII, 994205 (2 November 2016); doi: 10.1117/12.2238525
Show Author Affiliations
Jegadesan Subbiah, The Univ. of Melbourne (Australia)
Haotian Wang, The Univ. of Melbourne (Australia)
Wallace W. H. Wong, The Univ. of Melbourne (Australia)
David J. Jones, The Univ. of Melbourne (Australia)

Published in SPIE Proceedings Vol. 9942:
Organic Photovoltaics XVII
Zakya H. Kafafi; Paul A. Lane; Ifor D. W. Samuel, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?