Share Email Print

Proceedings Paper

Light-matter interaction: conversion of the optical energy and momentum to mechanical vibrations and phonons (Conference Presentation)
Author(s): Masud Mansuripur

Paper Abstract

Interactions between light and material media generally involve an exchange of energy and momentum. Whereas packets of electromagnetic radiation (i.e., photons) are known to carry energy as well as momentum, the eigen-modes of mechanical vibration (i.e., phonons) do not carry any momentum of their own. Considering that, in light-matter interactions, not only the total energy but also the total momentum (i.e., electromagnetic plus mechanical momentum) must be conserved, it becomes necessary to examine the momentum exchange mechanism in some detail. In this presentation, we describe the intricate means by which mechanical momentum is taken up and carried away by material media during reflection, refraction, and absorption of light pulses, thereby ensuring the conservation of linear momentum. Particular attention will be paid to periodically-structured media, which are capable of supporting acoustic as well as optical phonons.

Paper Details

Date Published: 9 November 2016
PDF: 1 pages
Proc. SPIE 9918, Metamaterials, Metadevices, and Metasystems 2016, 99180M (9 November 2016); doi: 10.1117/12.2238472
Show Author Affiliations
Masud Mansuripur, College of Optical Sciences, The Univ. of Arizona (United States)

Published in SPIE Proceedings Vol. 9918:
Metamaterials, Metadevices, and Metasystems 2016
Nader Engheta; Mikhail A. Noginov; Nikolay I. Zheludev, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?