Share Email Print

Proceedings Paper

Demonstrating the error budget for the climate absolute radiance and refractivity observatory through solar irradiance measurements (Conference Presentation)

Paper Abstract

The goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to provide high-accuracy data for evaluation of long-term climate change trends. Essential to the CLARREO project is demonstration of SI-traceable, reflected measurements that are a factor of 10 more accurate than current state-of-the-art sensors. The CLARREO approach relies on accurate, monochromatic absolute radiance calibration in the laboratory transferred to orbit via solar irradiance knowledge. The current work describes the results of field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) that is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. Recent measurements of absolute spectral solar irradiance using SOLARIS are presented. The ground-based SOLARIS data are corrected to top-of-atmosphere values using AERONET data collected within 5 km of the SOLARIS operation. The SOLARIS data are converted to absolute irradiance using laboratory calibrations based on the Goddard Laser for Absolute Measurement of Radiance (GLAMR). Results are compared to accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

Paper Details

Date Published: 18 November 2016
PDF: 1 pages
Proc. SPIE 9972, Earth Observing Systems XXI, 997217 (18 November 2016); doi: 10.1117/12.2238302
Show Author Affiliations
Kurtis J. Thome, NASA Goddard Space Flight Ctr. (United States)
Joel McCorkel, NASA Goddard Space Flight Ctr. (United States)
Amit Angal, Science Systems and Applications, Inc. (United States)

Published in SPIE Proceedings Vol. 9972:
Earth Observing Systems XXI
James J. Butler; Xiaoxiong (Jack) Xiong; Xingfa Gu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?