Share Email Print

Proceedings Paper

Organic scintillators with pulse shape discrimination for detection of radiation (Conference Presentation)
Author(s): Andrew Mabe; M. Leslie Carman; Andrew M. Glenn; Natalia P. Zaitseva; Stephen A. Payne

Paper Abstract

The detection of neutrons in the presence of gamma-ray fields has important applications in the fields of nuclear physics, homeland security, and medical imaging. Organic scintillators provide several attractive qualities as neutron detection materials including low cost, fast response times, ease of scaling, and the ability to implement pulse shape discrimination (PSD) to discriminate between neutrons and gamma-rays. This talk will focus on amorphous organic scintillators both in plastic form and small-molecule organic glass form. The first section of this talk will describe recent advances and improvements in the performance of PSD-capable plastic scintillators. The primary advances described in regard to modification of the polymer matrix, evaluation of new scintillating dyes, improved fabrication conditions, and implementation of additives which impart superior performance and mechanical properties to PSD-capable plastics as compared to commercially-available plastics and performance comparable to PSD-capable liquids. The second section of this talk will focus on a class of small-molecule organic scintillators based on modified indoles and oligophenylenes which form amorphous glasses as PSD-capable neutron scintillation materials. Though indoles and oligophenylenes have been known for many decades, their PSD properties have not been investigated and their scintillation properties only scantily investigated. Well-developed synthetic methodologies have permitted the synthesis of a library of structural analogs of these compounds as well as the investigation of their scintillation properties. The emission wavelengths of many indoles are in the sensitive region of common photomultiplier tubes, making them appropriate to be used as scintillators in either pure or doped form. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work has been supported by the U.S. Department of Energy Office of Nonproliferation Research and Development (NA-22) and by the Defense Threat Reduction Agency (DTRA).

Paper Details

Date Published: 2 November 2016
PDF: 1 pages
Proc. SPIE 9968, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVIII, 99680I (2 November 2016); doi: 10.1117/12.2238015
Show Author Affiliations
Andrew Mabe, Lawrence Livermore National Lab. (United States)
M. Leslie Carman, Lawrence Livermore National Lab. (United States)
Andrew M. Glenn, Lawrence Livermore National Lab. (United States)
Natalia P. Zaitseva, Lawrence Livermore National Lab. (United States)
Stephen A. Payne, Lawrence Livermore National Lab. (United States)

Published in SPIE Proceedings Vol. 9968:
Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVIII
Ralph B. James; Michael Fiederle; Arnold Burger; Larry Franks, Editor(s)

© SPIE. Terms of Use
Back to Top