Share Email Print

Proceedings Paper

Saturable absoprtion of graphene (Conference Presentation)
Author(s): Andrea Marini; Joel D. Cox; Javier F. Garcia de Abajo

Paper Abstract

Saturable absorption (SA) is an inherent property of photonic materials that manifests itself as an absorption quenching at high light intensities and is a key element for passive mode-locking (PML) in laser cavities, where continuous waves break into a train of ultrashort optical pulses. Currently, state-of-the-art semiconductor-based SA mirrors are routinely employed for PML lasers. However, these mirrors operate in a narrow spectral range, are poorly tunable, and require advanced fabrication techniques. Graphene overcomes this limitation thanks to its peculiar conical band structure, providing a universally-resonant wavelength-independent SA at low light intensity that can be further electrically tuned be means of an externally applied gate voltage. Here, we calculate intraband and interband contributions to SA of extended graphene by solving non-perturbatively the single-particle Dirac equation for massless Dirac fermions in the presence of an external electromagnetic field and comparing results with atomistic calculations in the framework of tight-binding and random-phase approximation. Further, we investigate the optical properties of randomly-oriented undoped graphene flakes embedded in externally pumped amplifying media. We demonstrate a novel mechanism leading to stable and tunable single-mode cavity-free lasing characterized by a well-determined and highly coherent spatial pattern. This cavity-free lasing mechanism profoundly relies on graphene highly-saturated absorption at rather modest light intensities, a remarkable property which enables self-organization of light into a well determined spatial mode profile.

Paper Details

Date Published: 7 November 2016
PDF: 1 pages
Proc. SPIE 9919, Nanophotonic Materials XIII, 99190Q (7 November 2016); doi: 10.1117/12.2237745
Show Author Affiliations
Andrea Marini, ICFO - Institut de Ciències Fotòniques (Spain)
Joel D. Cox, ICFO - Institut de Ciències Fotòniques (Spain)
Javier F. Garcia de Abajo, ICFO - Institut de Ciències Fotòniques (Spain)
ICREA-Institució Catalana de Recerca i Estudis Avançats (Spain)

Published in SPIE Proceedings Vol. 9919:
Nanophotonic Materials XIII
Stefano Cabrini; Gilles Lérondel; Adam M. Schwartzberg; Taleb Mokari, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?