Share Email Print

Proceedings Paper

Semi-supervised feature learning for hyperspectral image classification
Author(s): Pengfei Zhang; Liujuan Cao; Cheng Wang; Jonathan Li
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Hyperspectral image has high-dimensional Spectral–spatial features, those features with some noisy and redundant information. Since redundant features can have significant adverse effect on learning performance. So efficient and robust feature selection methods are make the best of labeled and unlabeled points to extract meaningful features and eliminate noisy ones. On the other hand, obtaining sufficient accurate labeled data is either impossible or expensive. In order to take advantage of both precious labeled and unlabeled data points, in this paper, we propose a new semisupervised feature selection method, Firstly, we use labeled points are to enlarge the margin between data points from different classes; Secondly, we use unlabeled points to find the local structure of the data space; Finally, we compare our proposed algorithm with Fisher score, PCA and Laplacian score on HSI classification. Experimental results on benchmark hyperspectral data sets demonstrate the efficiency and effectiveness of our proposed algorithm.

Paper Details

Date Published: 2 March 2016
PDF: 6 pages
Proc. SPIE 9901, 2nd ISPRS International Conference on Computer Vision in Remote Sensing (CVRS 2015), 99010F (2 March 2016); doi: 10.1117/12.2234855
Show Author Affiliations
Pengfei Zhang, Xiamen Univ. (China)
Liujuan Cao, Xiamen Univ. (China)
Cheng Wang, Xiamen Univ. (China)
Jonathan Li, Xiamen Univ. (China)

Published in SPIE Proceedings Vol. 9901:
2nd ISPRS International Conference on Computer Vision in Remote Sensing (CVRS 2015)
Cheng Wang; Rongrong Ji; Chenglu Wen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?