
Proceedings Paper
Systematics of an ambient-temperature, rapidly-rotating half-wave plateFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
In these proceedings, we summarize our in-field evaluation of temperature-to-polarization leakage associated with
the use of a continuously-rotating, ambient-temperature half-wave plate (HWP) on the Atacama B-Mode Search (ABS) experiment. Using two seasons of data, we demonstrate scalar leakage of ∼ 0.01%. This is consistent
with model expectations and an order of magnitude better than any previously-reported leakage. We constrain higher-order dipole and quadrupole leakage terms to be < 0.06% (95% confidence). Without any mitigation from scan cross-linking or boresight rotation, this corresponds to an upper limit on systematic errors in the tensor-to-scalar ratio r ;S 0.01. The HWP significantly reduces temperature-to-polarization leakage systematic errors for ABS and shows the promise of fast polarization modulation with HWPs for future experiments. Full details can be found in Ref. 1.
Paper Details
Date Published: 19 July 2016
PDF: 8 pages
Proc. SPIE 9914, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, 991415 (19 July 2016); doi: 10.1117/12.2232711
Published in SPIE Proceedings Vol. 9914:
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII
Wayne S. Holland; Jonas Zmuidzinas, Editor(s)
PDF: 8 pages
Proc. SPIE 9914, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, 991415 (19 July 2016); doi: 10.1117/12.2232711
Show Author Affiliations
T. Essinger-Hileman, Johns Hopkins Univ. (United States)
Princeton Univ. (United States)
A. Kusaka, Princeton Univ. (United States)
J. W. Appel, Johns Hopkins Univ. (United States)
Princeton Univ. (United States)
P. Gallardo, Cornell Univ. (United States)
K. D. Irwin, Stanford Univ. (United States)
National Institute of Standards and Technology (United States)
N. Jarosik, Princeton Univ. (United States)
M. R. Nolta, Univ. of Toronto (Canada)
Princeton Univ. (United States)
A. Kusaka, Princeton Univ. (United States)
J. W. Appel, Johns Hopkins Univ. (United States)
Princeton Univ. (United States)
P. Gallardo, Cornell Univ. (United States)
K. D. Irwin, Stanford Univ. (United States)
National Institute of Standards and Technology (United States)
N. Jarosik, Princeton Univ. (United States)
M. R. Nolta, Univ. of Toronto (Canada)
L. A. Page, Princeton Univ. (United States)
L. P. Parker, Johns Hopkins Univ. (United States)
Princeton Univ. (United States)
S. Raghunathan, Univ. de Chile (Chile)
Univ. of Melbourne (Australia)
J. L. Sievers, Princeton Univ. (United States)
Univ. of KwaZulu-Natal (South Africa)
S. M. Simon, Princeton Univ. (United States)
S. T. Staggs, Princeton Univ. (United States)
K. Visnjic, Princeton Univ. (United States)
L. P. Parker, Johns Hopkins Univ. (United States)
Princeton Univ. (United States)
S. Raghunathan, Univ. de Chile (Chile)
Univ. of Melbourne (Australia)
J. L. Sievers, Princeton Univ. (United States)
Univ. of KwaZulu-Natal (South Africa)
S. M. Simon, Princeton Univ. (United States)
S. T. Staggs, Princeton Univ. (United States)
K. Visnjic, Princeton Univ. (United States)
Published in SPIE Proceedings Vol. 9914:
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII
Wayne S. Holland; Jonas Zmuidzinas, Editor(s)
© SPIE. Terms of Use
