Share Email Print

Proceedings Paper

A novel design of dual-channel optical system of star-tracker based on non-blind area PAL system
Author(s): Yujie Luo; Jian Bai
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Star-tracker plays an important role in satellite navigation. Considering the satellites on near-Earth orbit, the system usually has two optical systems: one for observing the profile of Earth and the other for capturing the positions of stars. In this paper, we demonstrate a novel kind of dual-channel optical observation system of star-tracker with non-blind area PAL imaging system based on dichroic filter, which can combine both different observation channels into an integrated structure and realize the feature of miniaturization. According to the practical usage of star-tracker and the features of dichroic filter, we set the ultraviolet band as the PAL channel to observe the Earth with the FOV ranging from 40°-60°, and set the visible band as the front imaging channel to capture the stars far away from this system with the FOV ranging from 0°-20°. Consequently, the rays of both channels are converged on the same image plane, improving the efficiency of pixels of detector and reducing the weight and size of whole star-tracker system.

Paper Details

Date Published: 29 July 2016
PDF: 8 pages
Proc. SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 99046H (29 July 2016); doi: 10.1117/12.2232205
Show Author Affiliations
Yujie Luo, Zhejiang Univ. (China)
Jian Bai, Zhejiang Univ. (China)

Published in SPIE Proceedings Vol. 9904:
Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave
Howard A. MacEwen; Giovanni G. Fazio; Makenzie Lystrup; Natalie Batalha; Nicholas Siegler; Edward C. Tong, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?