Share Email Print

Proceedings Paper

Co-phasing primary mirror segments of an optical space telescope using a long stroke Zernike WFS
Author(s): Kate Jackson; J. Kent Wallace; Sergio Pellegrino
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Static Zernike phase-contrast plates have been used extensively in microscopy for half a century and, more recently, in optical telescopes for wavefront sensing. A dynamic Zernike wavefront sensor (WFS) with four phase shifts, for reducing error due to spurious light and eliminating other asynchronous noise, has been proposed for use in adaptive optics. Here, we propose adapting this method for co-phasing the primary mirror of a segmented space telescope. In order to extend the dynamic range of the WFS, which has a maximum range of +/ − λ/2, a phase- contrast plate with multiple steps, both positive and negative, has been developed such that errors as large as +/ − 10λ can be sensed. The manufacturing tolerances have been incorporated into simulations, which demonstrate that performance impacts are minimal. We show that the addition of this small optical plate along with a high precision linear translation stage at the prime focus of a telescope and pupil viewing capability can provide extremely accurate segment phasing with a simple white-light fringe fitting algorithm and a closed-loop controller. The original focal-plane geometry of a centro-symmetric phase shifting element is replaced with a much less constrained shape, such as a slot. Also, a dedicated pupil imager is not strictly required; an existing pupil sampler such as a Shack-Hartmann (SH) WFS can be used just as effectively, allowing simultaneous detection of wavefront errors using both intensity and spot positions on the SH-WFS. This could lead to an efficient synergy between Zernike and SH-WFS, enabling segment phasing in conjunction with high-dynamic range sensing.

Paper Details

Date Published: 29 July 2016
PDF: 10 pages
Proc. SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 99046D (29 July 2016); doi: 10.1117/12.2231736
Show Author Affiliations
Kate Jackson, California Institute of Technology (United States)
J. Kent Wallace, Jet Propulsion Lab. (United States)
Sergio Pellegrino, California Institute of Technology (United States)

Published in SPIE Proceedings Vol. 9904:
Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave
Howard A. MacEwen; Giovanni G. Fazio; Makenzie Lystrup; Natalie Batalha; Nicholas Siegler; Edward C. Tong, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?