Share Email Print

Proceedings Paper

Development of X-ray spectroscopic polarimetry with bent Si crystals and CFRP substrate
Author(s): Ryo Iizuka; Takanori Izumiya; Yohko Tsuboi
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The light from celestial objects includes four important quantities; images, time variation, energy spectrum, and polarization. In the field of X-ray astronomy, the capabilities of the former three have remarkably developed. On the other hand, the progress for the polarimetry is considerably delayed because of technical difficulties. In order to make a breakthrough in the field of X-ray polarimetry, we have developed a new type of optics for X-ray polarimetry. The system is collecting Bragg crystal with large area and very high sensitivity for the polarization dedicated to Fe-K lines. We adopt the 400 re ection of Si(100) crystals with high sensitivity for the polarization around Fe-K lines (6 ~ 7 keV), and bent the crystals with the wide X-ray band and high S/N ratio. Furthermore, to install small area of CCD to non-focal plane, it also has the spectroscopic capability with the better resolution than that of general X-ray CCD.

Our previous development was to bent Si crystals to the cylindrical shape of circle and parabola with the DLC deposition. However, for the better optics for the X-ray polarimetry, the shape should be the paraboloid of revolution to collect X-rays with high S/N ratio. We searched for the method to bent the Si crystals to the shape of the paraboloid of revolution. We devised the method to mold the crystal and the CFRP substrate simultaneously pushed to the sophisticated foundation with the paraboloid of revolution. We developed the prototype of about 8 inch in radius of one-quater size. The crystals was also bent in the circumferential direction. Therefore, the image capability examined with optical parallel beam is 0.6 degree. In this thesis, we discussed the new design for X-ray spectroscopic polarimetry, the evaluation of image capability.

Paper Details

Date Published: 18 July 2016
PDF: 10 pages
Proc. SPIE 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 99055E (18 July 2016); doi: 10.1117/12.2231166
Show Author Affiliations
Ryo Iizuka, ISAS/JAXA (Japan)
Takanori Izumiya, Chuo Univ. (Japan)
Yohko Tsuboi, Chuo Univ. (Japan)

Published in SPIE Proceedings Vol. 9905:
Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray
Jan-Willem A. den Herder; Tadayuki Takahashi; Marshall Bautz, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?