Share Email Print

Proceedings Paper

Dielectric impedance and optical performance of quantum dots doped OLEDs
Author(s): Marc Jobin; Cédric Pellodi; Nicolas Emmenegger
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We investigate the effect of the incorporation of CdSe quantum dots (QD) in the standard ITO/TPD/Alq3/Al organic light emitting diodes (OLED's). The OLED's structures have been prepared in a double glove box coupled to a vacuum chamber containing both low and high temperature evaporators. For the standard (undoped) OLED's, the hole transport layer (HTL) consisting of 50nm of TPD is deposited by spin coating (8000rpm during 60 sec) and the 40nm of Alq3 were deposited at 2A/sec (organic crucible Radak-I). 150nm of Al were finally evaporated at 5A/s. For the CdSe-doped OLED's, the procedure was the same expect that the QD's were mixed with TPD in toluene before spin coating. During the thermal processing if the film, the QD's are expected to segregate to the surface, and then will be located at the TPD/Alq3 interface. The various layers were imaged by Atomic Force Microscopy (AFM) at each phase of the structure deposition, and we could indeed visualize the segregated QD's above the TPD film. AFM was systematically used to monitor the homogeneity and the thickness of the various films. The impedance of the non-encapsulated films structures were measured in air in the 40-40MHz frequency range, with bias at 0V (non-emitting), 2V (low emission) and 8V (strong emission). The corresponding dielectric spectra were analyzed with the standard Havriliak-Negami (HV) formula, where the conductive term has been subtracted from the data in case of light emission. We have measured a relaxation ranging from 100kHZ for the unbiased structure to 1MHz for 8V (strong emission). Apart from this expected relaxation, we found a second relaxation mechanism around 10 MHz. The origin of this second peak will be discussed. To monitor the optical emission of the OLED's, we have built a specific bench which allows for the quantitative measurement of the emission spectra and the dynamics behavior of the OLED's (raising and falling time). We found that the incorporation of the QD's unfortunately results in the decrease of the light emission but with a favorable modification of the light spectrum (around 700nm).

Paper Details

Date Published: 27 April 2016
PDF: 6 pages
Proc. SPIE 9895, Organic Photonics VII, 98950F (27 April 2016); doi: 10.1117/12.2227821
Show Author Affiliations
Marc Jobin, Univ. of Applied Sciences of Western Switzerland (Switzerland)
Cédric Pellodi, Univ. of Applied Sciences of Western Switzerland (Switzerland)
Nicolas Emmenegger, Univ. of Applied Sciences of Western Switzerland (Switzerland)

Published in SPIE Proceedings Vol. 9895:
Organic Photonics VII
David Cheyns; Pierre M. Beaujuge; Volker van Elsbergen; Jean-Charles Ribierre, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?