Share Email Print

Proceedings Paper

Motionless active depth from defocus system using smart optics for camera autofocus applications
Author(s): M. Junaid Amin; Nabeel A. Riza
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper describes a motionless active Depth from Defocus (DFD) system design suited for long working range camera autofocus applications. The design consists of an active illumination module that projects a scene illuminating coherent conditioned optical radiation pattern which maintains its sharpness over multiple axial distances allowing an increased DFD working distance range. The imager module of the system responsible for the actual DFD operation deploys an electronically controlled variable focus lens (ECVFL) as a smart optic to enable a motionless imager design capable of effective DFD operation. An experimental demonstration is conducted in the laboratory which compares the effectiveness of the coherent conditioned radiation module versus a conventional incoherent active light source, and demonstrates the applicability of the presented motionless DFD imager design. The fast response and no-moving-parts features of the DFD imager design are especially suited for camera scenarios where mechanical motion of lenses to achieve autofocus action is challenging, for example, in the tiny camera housings in smartphones and tablets. Applications for the proposed system include autofocus in modern day digital cameras.

Paper Details

Date Published: 29 April 2016
PDF: 10 pages
Proc. SPIE 9896, Optics, Photonics and Digital Technologies for Imaging Applications IV, 98960N (29 April 2016); doi: 10.1117/12.2227753
Show Author Affiliations
M. Junaid Amin, Univ. College Cork (Ireland)
Nabeel A. Riza, Univ. College Cork (Ireland)

Published in SPIE Proceedings Vol. 9896:
Optics, Photonics and Digital Technologies for Imaging Applications IV
Peter Schelkens; Touradj Ebrahimi; Gabriel Cristóbal; Frédéric Truchetet; Pasi Saarikko, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?