Share Email Print

Proceedings Paper

Long-term trend in tropospheric carbon monoxide over the globe
Author(s): I. A. Girach; Prabha R. Nair
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Tropospheric carbon monoxide (CO) is an air pollutant and indirect greenhouse gas which plays a major role in atmospheric chemistry involving hydroxyl (OH) radical. We utilised the remote-sensing retrievals of lower-tropospheric CO (at 900 hPa) from Measurements of Pollution in the Troposphere (MOPITT) aboard Terra-satellite for the period of ~15 years. Using simple linear regression model, we estimated the decreasing trend of ~0-2 %year-1 in the lowertropospheric CO over the globe. Utilising the in-situ measurements of surface-CO over 83 locations carried out by the NOAA (National Oceanic and Atmospheric Administration) network, we confirmed the observed negative trend as surface-CO showed decreasing trend over most of the locations. To estimate the trend in columnar CO, we utilised multiple retrievals of from different satellites, MOPITT, AIRS (Atmospheric InfraRed Sounder), and TES (Tropospheric Emission Spectrometer). All data sets show the decreasing trend of 0.2-0.5 %year-1 in columnar CO when averaged over entire globe. However, the heterogeneity in the trend is observed on regional basis. The retrievals of upper-tropospheric CO (at 200 hPa) from MOPITT and AIRS show an increasing trend of 1-4 %year-1 over the globe. However, the retrievals of upper-tropospheric CO from MLS (Microwave Limb Sounder) show decreasing trend. Further investigations are needed to confirm the trend in the upper-tropospheric CO over the globe. The decreasing trend in lower-tropospheric CO and columnar CO could be due to moistening of troposphere and/or increase in tropospheric ozone, causing increase in OH radical (strengthening the depletion of lower-tropospheric CO).

Paper Details

Date Published: 6 May 2016
PDF: 7 pages
Proc. SPIE 9876, Remote Sensing of the Atmosphere, Clouds, and Precipitation VI, 987624 (6 May 2016); doi: 10.1117/12.2223380
Show Author Affiliations
I. A. Girach, Vikram Sarabhai Space Ctr. (India)
Prabha R. Nair, Vikram Sarabhai Space Ctr. (India)

Published in SPIE Proceedings Vol. 9876:
Remote Sensing of the Atmosphere, Clouds, and Precipitation VI
Eastwood Im; Raj Kumar; Song Yang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?