
Proceedings Paper
Multiple kernel based feature and decision level fusion of iECO individuals for explosive hazard detection in FLIR imageryFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
A serious threat to civilians and soldiers is buried and above ground explosive hazards. The automatic detection of such
threats is highly desired. Many methods exist for explosive hazard detection, e.g., hand-held based sensors, downward
and forward looking vehicle mounted platforms, etc. In addition, multiple sensors are used to tackle this extreme problem,
such as radar and infrared (IR) imagery. In this article, we explore the utility of feature and decision level fusion of learned
features for forward looking explosive hazard detection in IR imagery. Specifically, we investigate different ways to fuse
learned iECO features pre and post multiple kernel (MK) support vector machine (SVM) based classification. Three MK
strategies are explored; fixed rule, heuristics and optimization-based. Performance is assessed in the context of receiver
operating characteristic (ROC) curves on data from a U.S. Army test site that contains multiple target and clutter types,
burial depths and times of day. Specifically, the results reveal two interesting things. First, the different MK strategies
appear to indicate that the different iECO individuals are all more-or-less important and there is not a dominant feature.
This is reinforcing as our hypothesis was that iECO provides different ways to approach target detection. Last, we observe
that while optimization-based MK is mathematically appealing, i.e., it connects the learning of the fusion to the underlying
classification problem we are trying to solve, it appears to be highly susceptible to over fitting and simpler, e.g., fixed rule
and heuristics approaches help us realize more generalizable iECO solutions.
Paper Details
Date Published: 3 May 2016
PDF: 11 pages
Proc. SPIE 9823, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI, 98231G (3 May 2016); doi: 10.1117/12.2223297
Published in SPIE Proceedings Vol. 9823:
Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI
Steven S. Bishop; Jason C. Isaacs, Editor(s)
PDF: 11 pages
Proc. SPIE 9823, Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI, 98231G (3 May 2016); doi: 10.1117/12.2223297
Show Author Affiliations
Stanton R. Price, Mississippi State Univ. (United States)
Bryce Murray, Mississippi State Univ. (United States)
Lequn Hu, Mississippi State Univ. (United States)
Derek T. Anderson, Mississippi State Univ. (United States)
Bryce Murray, Mississippi State Univ. (United States)
Lequn Hu, Mississippi State Univ. (United States)
Derek T. Anderson, Mississippi State Univ. (United States)
Timothy C. Havens, Michigan Technological Univ. (United States)
Robert H. Luke, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
James M. Keller, Univ. of Missouri (United States)
Robert H. Luke, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
James M. Keller, Univ. of Missouri (United States)
Published in SPIE Proceedings Vol. 9823:
Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI
Steven S. Bishop; Jason C. Isaacs, Editor(s)
© SPIE. Terms of Use
