Share Email Print

Proceedings Paper

Two-photon holographic optogenetics of neural circuits (Conference Presentation)
Author(s): Weijian Yang; Luis Carrillo-Reid; Darcy S. Peterka; Rafael Yuste

Paper Abstract

Optical manipulation of in vivo neural circuits with cellular resolution could be important for understanding cortical function. Despite recent progress, simultaneous optogenetic activation with cellular precision has either been limited to 2D planes, or a very small numbers of neurons over a limited volume. Here we demonstrate a novel paradigm for simultaneous 3D activation using a low repetition rate pulse-amplified fiber laser system and a spatial light modulator (SLM) to project 3D holographic excitation patterns on the cortex of mice in vivo for targeted volumetric 3D photoactivation. This method is compatible with two-photon imaging, and enables the simultaneous activation of multiple cells in 3D, using red-shifted opsins, such as C1V1 or ReaChR, while simultaneously imaging GFP-based sensors such as GCaMP6. This all-optical imaging and 3D manipulation approach achieves simultaneous reading and writing of cortical activity, and should be a powerful tool for the study of neuronal circuits.

Paper Details

Date Published: 26 April 2016
PDF: 1 pages
Proc. SPIE 9690, Clinical and Translational Neurophotonics; Neural Imaging and Sensing; and Optogenetics and Optical Manipulation, 96902Q (26 April 2016); doi: 10.1117/12.2219844
Show Author Affiliations
Weijian Yang, Columbia Univ. (United States)
Luis Carrillo-Reid, Columbia Univ. (United States)
Darcy S. Peterka, Columbia Univ. (United States)
Rafael Yuste, Columbia Univ. (United States)

Published in SPIE Proceedings Vol. 9690:
Clinical and Translational Neurophotonics; Neural Imaging and Sensing; and Optogenetics and Optical Manipulation
Steen J. Madsen; E. Duco Jansen; Samarendra K. Mohanty; Nitish V. Thakor; Qingming Luo; Victor X. D. Yang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?