Share Email Print

Proceedings Paper

An efficient low frequency horizontal diamagnetic levitation mechanism based vibration energy harvester
Author(s): S. Palagummi; F. G. Yuan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation (HDL) mechanism based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit (FoMv). The HDL mechanism comprises of three permanent magnets and two diamagnetic plates. Two of the magnets, aka lifting magnets, are placed co-axially at a distance such that each attract a centrally located magnet, aka floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet and the diamagnetic plate are parametrically studied to quantify their effects on the size, stability of the levitation mechanism and the resonant frequency of the floating magnet. For vibration energy harvesting using the HDL mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8% and a FoMv of 0.23% when excited at a root mean square acceleration of 0.0546 m/s2 and at frequency of 1.9 Hz.

Paper Details

Date Published: 15 April 2016
PDF: 19 pages
Proc. SPIE 9799, Active and Passive Smart Structures and Integrated Systems 2016, 97991O (15 April 2016); doi: 10.1117/12.2218914
Show Author Affiliations
S. Palagummi, North Carolina State Univ. (United States)
F. G. Yuan, North Carolina State Univ. (United States)
Hunan Univ. (China)

Published in SPIE Proceedings Vol. 9799:
Active and Passive Smart Structures and Integrated Systems 2016
Gyuhae Park, Editor(s)

© SPIE. Terms of Use
Back to Top