Share Email Print

Proceedings Paper

Photonic crystal fiber modal interferometer for explosives detection
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The detection of explosives and their residues is of great importance in public health, antiterrorism and homeland security applications. The vapor pressures of most explosive compounds are extremely low and attenuation of the available vapor is often great due to diffusion in the environment, making direct vapor detection difficult. In this paper, a photonic-microfluidic integrated sensor for highly sensitive 2,4,6-trinitrotoluene (TNT) detection is described based on an in-fiber Mach-Zehnder interferometer (MZI) in a photonic crystal fiber (PCF). A segment of PCF is inserted between standard single-mode fibers (SMF) via butt coupling to form a modal interferometer, in which the cladding modes are excited and interfere with the fundamental core mode. Due to butt coupling, the small air gap between SMF and PCF forms a coupling region and also serves as an inlet/outlet for the gas. The sensor is fabricated by immobilizing a chemo-recognition coating on the inner surface of the holey region of the PCF, which selectively and reversibly binds TNT molecules on the sensitized surface. The sensing mechanism is based on the determination of the TNT-induced wavelength shift of interference peaks due to the refractive index change of the holey-layer. The sensor device therefore is capable of field operation.

Paper Details

Date Published: 16 April 2016
PDF: 9 pages
Proc. SPIE 9802, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2016, 98021K (16 April 2016); doi: 10.1117/12.2218634
Show Author Affiliations
Chuanyi Tao, Chongqing Univ. of Technology (China)
Northwestern Univ. (United States)
Heming Wei, Northwestern Univ. (United States)
Sridhar Krishnaswamy, Northwestern Univ. (United States)

Published in SPIE Proceedings Vol. 9802:
Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2016
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?