Share Email Print

Proceedings Paper

Characterization of ultraviolet light cured polydimethylsiloxane films for low-voltage, dielectric elastomer actuators
Author(s): Tino Töpper; Fabian Wohlfender; Florian Weiss; Bekim Osmani; Bert Müller
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The reduction the operation voltage has been the key challenge to realize of dielectric elastomer actuators (DEA) for many years - especially for the application fields of robotics, lens systems, haptics and future medical implants. Contrary to the approach of manipulating the dielectric properties of the electrically activated polymer (EAP), we intend to realize low-voltage operation by reducing the polymer thickness to the range of a few hundred nanometers. A study recently published presents molecular beam deposition to reliably grow nanometer-thick polydimethylsiloxane (PDMS) films. The curing of PDMS is realized using ultraviolet (UV) radiation with wavelengths from 180 to 400 nm radicalizing the functional side and end groups. The understanding of the mechanical properties of sub-micrometer-thin PDMS films is crucial to optimize DEAs actuation efficiency. The elastic modulus of UV-cured spin-coated films is measured by nano-indentation using an atomic force microscope (AFM) according to the Hertzian contact mechanics model. These investigations show a reduced elastic modulus with increased indentation depth. A model with a skin-like SiO2 surface with corresponding elastic modulus of (2.29 ± 0.31) MPa and a bulk modulus of cross-linked PDMS with corresponding elastic modulus of (87 ± 7) kPa is proposed. The surface morphology is observed with AFM and 3D laser microscopy. Wrinkled surface microstructures on UV-cured PDMS films occur for film thicknesses above (510 ± 30) nm with an UV-irradiation density of 7.2 10-4 J cm-2 nm-1 at a wavelength of 190 nm.

Paper Details

Date Published: 15 April 2016
PDF: 10 pages
Proc. SPIE 9798, Electroactive Polymer Actuators and Devices (EAPAD) 2016, 979821 (15 April 2016); doi: 10.1117/12.2218608
Show Author Affiliations
Tino Töpper, Univ. Basel (Switzerland)
Fabian Wohlfender, Univ. Basel (Switzerland)
Florian Weiss, Univ. Basel (Switzerland)
Bekim Osmani, Univ. Basel (Switzerland)
Bert Müller, Univ. Basel (Switzerland)

Published in SPIE Proceedings Vol. 9798:
Electroactive Polymer Actuators and Devices (EAPAD) 2016
Yoseph Bar-Cohen; Frédéric Vidal, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?