Share Email Print

Proceedings Paper

Geminal cross-coupling for AIE-active topological tetraarylethene fluorophores (Conference Presentation)
Author(s): Ming-Qiang Zhu; Tao Chen; Ze-Qiang Chen

Paper Abstract

The cross-coupling reactions have been used in C-C bond formation which can be used extensively in optoelectronic materials for organic light emitting diode (OLED), organic photovoltaics and chemical biosensing. Here, we report twofold geminal C-C bond formation at 1,1-dibromoolefins via cross-coupling reactions of aromatic boronic esters over Pd catalysts for multiple topological configurations of π-conjugated molecules. We employ a series of recipes from a precursor toolbox to produce π-conjugated macrocycles, conjugated dendrimers, 1-dimensional linear conjugated polymers, 2-dimensional conjugated microporous polymers (CMPs) and crosslinking conjugated polymer nanoparticles (CCPNs). The π-conjugated macrocycles, dendrimers and 1-D polymers show characteristic aggregation-induced emission properties. 2-D conjugated microporous polymers possess unique porosity of 2-3 nm. This universal strategy toward definite topological configurations of π-conjugated molecules enables efficient coupling of aryl bromides with various coupling partners under mild conditions affording multiple topological conjugated systems with abundant optical and optoelectronic interest.

Paper Details

Date Published: 27 April 2016
PDF: 1 pages
Proc. SPIE 9721, Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII, 97210G (27 April 2016); doi: 10.1117/12.2216561
Show Author Affiliations
Ming-Qiang Zhu, Huazhong Univ. of Science and Technology (China)
Tao Chen, Huazhong Univ. of Science and Technology (China)
Ze-Qiang Chen, Huazhong Univ. of Science and Technology (China)

Published in SPIE Proceedings Vol. 9721:
Nanoscale Imaging, Sensing, and Actuation for Biomedical Applications XIII
Alexander N. Cartwright; Dan V. Nicolau; Dror Fixler, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?