Share Email Print

Proceedings Paper

A framework for incorporating DTI Atlas Builder registration into tract-based spatial statistics and a simulated comparison to standard TBSS
Author(s): Matthew Leming; Rachel Steiner; Martin Styner
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Tract-based spatial statistics (TBSS)6 is a software pipeline widely employed in comparative analysis of the white matter integrity from diffusion tensor imaging (DTI) datasets. In this study, we seek to evaluate the relationship between different methods of atlas registration for use with TBSS and different measurements of DTI (fractional anisotropy, FA, axial diffusivity, AD, radial diffusivity, RD, and medial diffusivity, MD). To do so, we have developed a novel tool that builds on existing diffusion atlas building software, integrating it into an adapted version of TBSS called DAB-TBSS (DTI Atlas Builder-Tract-Based Spatial Statistics) by using the advanced registration offered in DTI Atlas Builder7. To compare the effectiveness of these two versions of TBSS, we also propose a framework for simulating population differences for diffusion tensor imaging data, providing a more substantive means of empirically comparing DTI group analysis programs such as TBSS. In this study, we used 33 diffusion tensor imaging datasets and simulated group-wise changes in this data by increasing, in three different simulations, the principal eigenvalue (directly altering AD), the second and third eigenvalues (RD), and all three eigenvalues (MD) in the genu, the right uncinate fasciculus, and the left IFO. Additionally, we assessed the benefits of comparing the tensors directly using a functional analysis of diffusion tensor tract statistics (FADTTS10). Our results indicate comparable levels of FA-based detection between DAB-TBSS and TBSS, with standard TBSS registration reporting a higher rate of false positives in other measurements of DTI. Within the simulated changes investigated here, this study suggests that the use of DTI Atlas Builder’s registration enhances TBSS group-based studies.

Paper Details

Date Published: 29 March 2016
PDF: 9 pages
Proc. SPIE 9788, Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging, 97882S (29 March 2016); doi: 10.1117/12.2216517
Show Author Affiliations
Matthew Leming, Univ. of North Carolina, Chapel Hill (United States)
Rachel Steiner, Vanderbilt Univ. (United States)
Martin Styner, Univ. of North Carolina, Chapel Hill (United States)

Published in SPIE Proceedings Vol. 9788:
Medical Imaging 2016: Biomedical Applications in Molecular, Structural, and Functional Imaging
Barjor Gimi; Andrzej Krol, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?