Share Email Print

Proceedings Paper

Influence of surface roughness on frequency shift and third-order nonlinear susceptibility of adsorbed particles
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this work we present experimental data that show that the roughness of a metal surface strongly influences the metal induced optical transition frequency shift of alkali atoms that are adsorbed close (a few tens of Angstroms) to the metal. The metal induced changes of electronic lifetime depend on distance (alpha) d4, suggesting surface electron hole pair excitation to be the dominant relaxation mechanism for electronically excited Na atoms at distances between 24 and 32 angstroms from a rough Au surface. The nonlinear response of metal surfaces is also well known to be enhanced by surface roughness. It has been anticipated that this enhancement should be most pronounced for a third order nonlinear optical process. Here, we present data of strong enhancement of (chi) (3)eff for rough metal surfaces. The surfaces consist of large alkali metal clusters, adsorbed on dielectrics. By changing the cluster size distribution we are able to study the third order nonlinearity as a function of shape of all the alkali protrusions.

Paper Details

Date Published: 25 September 1995
PDF: 12 pages
Proc. SPIE 2547, Laser Techniques for Surface Science II, (25 September 1995); doi: 10.1117/12.221503
Show Author Affiliations
Frank Balzer, Max-Planck-Institut fuer Stroemungsforschung (Germany)
Horst-Guenter Rubahn, Max-Planck-Institut fuer Stroemungsforschung (Germany)

Published in SPIE Proceedings Vol. 2547:
Laser Techniques for Surface Science II
Janice M. Hicks; Wilson Ho; Hai-Lung Dai, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?