Share Email Print

Proceedings Paper

Photoacoustic image reconstruction from ultrasound post-beamformed B-mode image
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A requirement to reconstruct photoacoustic (PA) image is to have a synchronized channel data acquisition with laser firing. Unfortunately, most clinical ultrasound (US) systems don’t offer an interface to obtain synchronized channel data. To broaden the impact of clinical PA imaging, we propose a PA image reconstruction algorithm utilizing US B-mode image, which is readily available from clinical scanners. US B-mode image involves a series of signal processing including beamforming, followed by envelope detection, and end with log compression. Yet, it will be defocused when PA signals are input due to incorrect delay function. Our approach is to reverse the order of image processing steps and recover the original US post-beamformed radio-frequency (RF) data, in which a synthetic aperture based PA rebeamforming algorithm can be further applied. Taking B-mode image as the input, we firstly recovered US postbeamformed RF data by applying log decompression and convoluting an acoustic impulse response to combine carrier frequency information. Then, the US post-beamformed RF data is utilized as pre-beamformed RF data for the adaptive PA beamforming algorithm, and the new delay function is applied by taking into account that the focus depth in US beamforming is at the half depth of the PA case. The feasibility of the proposed method was validated through simulation, and was experimentally demonstrated using an acoustic point source. The point source was successfully beamformed from a US B-mode image, and the full with at the half maximum of the point improved 3.97 times. Comparing this result to the ground-truth reconstruction using channel data, the FWHM was slightly degraded with 1.28 times caused by information loss during envelope detection and convolution of the RF information.

Paper Details

Date Published: 15 March 2016
PDF: 6 pages
Proc. SPIE 9708, Photons Plus Ultrasound: Imaging and Sensing 2016, 970837 (15 March 2016); doi: 10.1117/12.2213819
Show Author Affiliations
Haichong K. Zhang, Johns Hopkins Univ. (United States)
Xiaoyu Guo, Johns Hopkins Univ. (United States)
Hyun Jae Kang, Johns Hopkins Univ. (United States)
Emad M. Boctor, Johns Hopkins Univ. (United States)

Published in SPIE Proceedings Vol. 9708:
Photons Plus Ultrasound: Imaging and Sensing 2016
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?