Share Email Print

Proceedings Paper

Performance analysis of wind velocity edge techniques utilizing Fabry-Perot etalons
Author(s): Dina Gutkowicz-Krusin; Marek Elbaum
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We developed an analytic framework to asses the performance of wind velocity measurements with the edge technique using a pulsed lidar. This technique is insensitive to frequency jitter and shifts of both laser and filter. This paper analyzes the applicability of the edge technique for a pulsed lidar. We show the velocity estimation with the edge technique is, in general, biased and that the bias depends on signal fading statistics, energy/pulse, and the number of pulses used for estimation. Two practical signal processing algorithms are considered for the wind velocity estimation. Analysis of their performance includes the trade-off between the number of pulses and energy/pulse. The effect of partial coherence of laser radiation is bounded by considering two limiting cases: (1) signal fading and its coherence can be neglected; and (2) signal fading is very strong and the effects of coherence degrade the lidar performance.

Paper Details

Date Published: 22 September 1995
PDF: 10 pages
Proc. SPIE 2532, Application and Theory of Periodic Structures, (22 September 1995); doi: 10.1117/12.221223
Show Author Affiliations
Dina Gutkowicz-Krusin, Electro-Optical Sciences, Inc. (United States)
Marek Elbaum, Electro-Optical Sciences, Inc. (United States)

Published in SPIE Proceedings Vol. 2532:
Application and Theory of Periodic Structures
Tomasz Jannson, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?