Share Email Print

Proceedings Paper

Grueneisen relaxation photoacoustic microscopy in vivo (Conference Presentation)

Paper Abstract

Optical-resolution photoacoustic microscopy (OR-PAM) can achieve submicron lateral resolution by tightly focusing the excitation light, while the axial resolution is still limited by the frequency bandwidth of the ultrasonic transducer. The Grueneisen relaxation effect, in which the Grueneisen parameter changes within the thermal relaxation time following a laser impulse heating, can provide excellent axial resolution due to its optical sectioning property. Based on this effect, Grueneisen relaxation photoacoustic microscopy (GR-PAM) was developed and demonstrated ex vivo. Here, we present for the first time in vivo imaging of mouse brains with improved axial resolution based on GR-PAM. An intensity-modulated continuous-wave (CW) 532 nm laser thermally heated the in-focus absorber. Another 532 nm pulsed laser, which is aligned confocally with the CW laser, generated the photoacoustic (PA) signal from the absorber. The difference between the amplitudes of the photoacoustic signals with and without heating was used for image reconstruction. The achieved axial resolution is ~12.5 µm, which is fivefold better than the acoustically determined value for a 20 MHz-bandwidth ultrasound transducer. The system was demonstrated by imaging a blood-filled tube ex vivo and blood vessels of mouse brains in vivo. The blood-filled tube diameter obtained from the PA image by GR-PAM is 105 µm, which is much closer to its actual diameter (100 µm) than the value from conventional OR-PAM (160 µm). This axial resolution improvement was further validated in imaging mouse brains in vivo, and yielded significantly narrower axial profiles of the vessels. This in vivo demonstration of imaging by GR-PAM might inspire more applications in PA biomedical imaging and sensing.

Paper Details

Date Published: 27 April 2016
PDF: 1 pages
Proc. SPIE 9708, Photons Plus Ultrasound: Imaging and Sensing 2016, 97082Q (27 April 2016); doi: 10.1117/12.2211196
Show Author Affiliations
Jun Ma, Washington Univ. in St. Louis (United States)
Junhui Shi, Washington Univ. in St. Louis (United States)
Pengfei Hai, Washington Univ. in St. Louis (United States)
Yong Zhou, Washington Univ. in St. Louis (United States)
Lihong V. Wang, Washington Univ. in St. Louis (United States)

Published in SPIE Proceedings Vol. 9708:
Photons Plus Ultrasound: Imaging and Sensing 2016
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?