Share Email Print

Proceedings Paper

Modeling refractive metasurfaces in series as a single metasurface
Author(s): Fatima Toor; Ananda Carl Guneratne
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Metasurfaces are boundaries between two media that are engineered to induce an abrupt phase shift in propagating light over a distance comparable to the wavelength of the light. Metasurface applications exploit this rapid phase shift to allow for precise control of wavefronts. The phase gradient is used to compute the angle at which light is refracted using the generalized Snell’s Law. [1] In practice, refractive metasurfaces are designed using a relatively small number of phaseshifting elements such that the phase gradient is discrete rather than continuous. Designing such a metasurface requires finding phase-shifting elements that cover a full range of phases (a phase range) from 0 to 360 degrees. We demonstrate an analytical technique to calculate the refraction angle due to multiple metasurfaces arranged in series without needing to account for the effect of each individual metasurface. The phase gradients of refractive metasurfaces in series may be summed to obtain the phase gradient of a single equivalent refractive metasurface. This result is relevant to any application that requires a system with multiple metasurfaces, such as biomedical imaging [2], wavefront correctors [3], and beam shaping [4].

Paper Details

Date Published: 14 March 2016
PDF: 6 pages
Proc. SPIE 9756, Photonic and Phononic Properties of Engineered Nanostructures VI, 97560D (14 March 2016); doi: 10.1117/12.2211189
Show Author Affiliations
Fatima Toor, The Univ. of Iowa (United States)
Ananda Carl Guneratne, The Univ. of Iowa (United States)

Published in SPIE Proceedings Vol. 9756:
Photonic and Phononic Properties of Engineered Nanostructures VI
Ali Adibi; Shawn-Yu Lin; Axel Scherer, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?