Share Email Print

Proceedings Paper

An automated breast ultrasound scanner with integrated photoacoustic tomography
Author(s): Corey J. Kelly; Hamid Moradi; Septimiu E. Salcudean
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We have integrated photo-acoustic imaging into an automated breast ultrasound scanner (ABUS) with the goal of simultaneously performing ultrasound (US) and multi-spectral photo-acoustic tomography (PAT). This was accomplished with minimal change to the existing automated scanner by coupling laser light into an optical fiber for flexible and robust light delivery. We present preliminary tomography data acquired with this setup, including a simple resolution-testing geometry and a tissue phantom. Integrating PAT into the ABUS such that breast imaging is possible will require illumination from below the transducer dome. To that end, we are moving towards a fiber-based, localized illumination geometry which is fixed relative to the transducer. By illuminating locally (only near the current acquisition slice), this approach reduces overall light exposure at the tissue surface, allowing higher light intensity per acquisition (which translates to higher absorber contrast), while remaining below safe exposure thresholds. We present time-domain simulations of photo-acoustic imaging under non-uniform illumination conditions, and test one potential weighting scheme which can be used to extract absorber locations.

Paper Details

Date Published: 15 March 2016
PDF: 9 pages
Proc. SPIE 9708, Photons Plus Ultrasound: Imaging and Sensing 2016, 970809 (15 March 2016); doi: 10.1117/12.2211181
Show Author Affiliations
Corey J. Kelly, The Univ. of British Columbia (Canada)
Hamid Moradi, The Univ. of British Columbia (Canada)
Septimiu E. Salcudean, The Univ. of British Columbia (Canada)

Published in SPIE Proceedings Vol. 9708:
Photons Plus Ultrasound: Imaging and Sensing 2016
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?