Share Email Print

Proceedings Paper

Metal-clad waveguide characterization for contact-based light transmission into tissue
Author(s): Jeffrey Chininis; Paul Whiteside; Heather K. Hunt
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

As contemporary laser dermatology procedures, like tattoo removal and skin resurfacing, become more popular, the complications of their operation are also becoming more prevalent. Frequent incidences of over-exposure, ocular injury, and excessive thermal damage represent mounting concerns for those seeking such procedures; moreover, each of these problems is a direct consequence of the standard, free-space method of laser transmission predominantly used in clinical settings. Therefore, an alternative method of light transmission is needed to minimize these problems. Here, we demonstrate and characterize an alternative method that uses planar waveguides to deliver light into sample tissue via direct contact. To do this, slab substrates made from glass were clad in layers of titanium and silver, constraining the light within the waveguide along the waveguide’s length. By creating active areas on the waveguide surface, the propagating light could then optically tunnel into the tissue sample, when the waveguide was brought into contact with the tissue. SEM and EDS were used to characterize the metal film thickness and deposition rates onto the glass substrates. Laser light from a Q-switched Nd:YAG source operating at 532nm was coupled into the waveguide and transmitted into samples of pig skin. The amount of light transmitted was measured using photoacoustics techniques, in conjunction with a photodiode and integrating sphere. Transmitting light into tissue in this manner effectively resolves or circumvents the complications caused by free-space propagation methods as it reduces the operating distance to 0, which prevents hazardous back-reflections and allows for the ready incorporation of contact cooling technologies.

Paper Details

Date Published: 29 February 2016
PDF: 12 pages
Proc. SPIE 9689, Photonic Therapeutics and Diagnostics XII, 968915 (29 February 2016); doi: 10.1117/12.2211119
Show Author Affiliations
Jeffrey Chininis, Univ. of Missouri (United States)
Paul Whiteside, Univ. of Missouri (United States)
Heather K. Hunt, Univ. of Missouri (United States)

Published in SPIE Proceedings Vol. 9689:
Photonic Therapeutics and Diagnostics XII
Hyun Wook Kang; Guillermo J. Tearney M.D.; Melissa C. Skala; Bernard Choi; Andreas Mandelis; Brian J. F. Wong M.D.; Justus F. Ilgner M.D.; Nikiforos Kollias; Paul J. Campagnola; Kenton W. Gregory M.D.; Laura Marcu; Haishan Zeng, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?