Share Email Print
cover

Proceedings Paper

Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)
Author(s): Hasan Yilmaz

Paper Abstract

Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82–87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

Paper Details

Date Published: 27 April 2016
PDF: 1 pages
Proc. SPIE 9717, Adaptive Optics and Wavefront Control for Biological Systems II, 97171A (27 April 2016); doi: 10.1117/12.2208013
Show Author Affiliations
Hasan Yilmaz, Yale Univ. (United States)
Univ. Twente (Netherlands)


Published in SPIE Proceedings Vol. 9717:
Adaptive Optics and Wavefront Control for Biological Systems II
Thomas G. Bifano; Joel Kubby; Sylvain Gigan, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray