
Proceedings Paper
On the universe's cybernetics duality behaviorFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Universal cybernetics is the study of control and communications in living and non-living systems. In this paper the universal cybernetics duality principle (UCDP), first identified in control theory in 1978 and expressing a cybernetic duality behavior for our universe, is reviewed. The review is given on the heels of major prizes given to physicists for their use of mathematical dualities in solving intractable problems in physics such as those of cosmology’s ‘dark energy’, an area that according to a recent New York Times article has become “a cottage industry in physics today”. These dualities are not unlike those of our UCDP that are further enhanced with physical dualities. For instance, in 2008 the UCDP guided us to the derivation of the laws of retention in physics as the space-penalty dual of the laws of motion in physics, including the dark energy thought responsible for the observed increase of the volume of our Universe as it ages. The UCDP has also guided us to the discovery of significant results in other fields such as: 1) in matched processors for quantized control with applications in the modeling of central nervous system (CNS) control mechanisms; 2) in radar designs where the discovery of latency theory, the time-penalty dual of information-theory, has led us to high-performance radar solutions that evade the use of ‘big data’ in the form of SAR imagery of the earth; and 3) in unveiling biological lifespan bounds where the life-expectancy of an organism is sensibly predicted through lingerdynamics, the identified time-penalty dual of thermodynamics, which relates its adult lifespan to either: a. the ratio of its body size to its nutritional consumption rate; or b. its specific heat-capacity; or c. the ratio of its nutritional consumption rate energy to its entropic volume energy, a type of dark energy that is consistent with the observed decrease in the mass density of the organism as it ages.
Paper Details
Date Published: 21 May 2015
PDF: 20 pages
Proc. SPIE 9497, Mobile Multimedia/Image Processing, Security, and Applications 2015, 94970O (21 May 2015); doi: 10.1117/12.2183934
Published in SPIE Proceedings Vol. 9497:
Mobile Multimedia/Image Processing, Security, and Applications 2015
Sos S. Agaian; Sabah A. Jassim; Eliza Yingzi Du, Editor(s)
PDF: 20 pages
Proc. SPIE 9497, Mobile Multimedia/Image Processing, Security, and Applications 2015, 94970O (21 May 2015); doi: 10.1117/12.2183934
Show Author Affiliations
Erlan Hector Feria, College of Staten Island, City Univ. of New York (United States)
Published in SPIE Proceedings Vol. 9497:
Mobile Multimedia/Image Processing, Security, and Applications 2015
Sos S. Agaian; Sabah A. Jassim; Eliza Yingzi Du, Editor(s)
© SPIE. Terms of Use
