
Proceedings Paper
Multi-functional hinge equipped with a magneto-rheological rotary damper for solar array deployment systemFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
This article describes the design and simulation of a novel multi-functional hinge equipped with a rotary magnetorheological damper for solar array deployment system, which is comprised of a hinge, an angular sensor, a positioning and locking mechanism and a rotary damper. In order to achieve the compact design in structure, some components were reused in different function modules. It’s the first to use magnet-rheological fluid (MRF) to dissipate the energy in solar array deployment system. The main advantage in using MR rotary damper instead of a viscous fluid rotary damper is that the damping force of MR damper can be adjusted according to the external magnetic field environment excited. A mechanic model was built and the structure design was focused on the MR rotary damper, a damping force model of this damper is deduced based on hydromechanics with Bingham plastic constitutive model. A simulation of deployment motion was taken to validate the motion sequence of various components during the unfolding and locking process. It can be obtained that a constant damping coefficient can hardly balance the different performance of solar deployment system, then a simulation of the proposed deployment system equipped with rotary MR damper was carried out. According to the simulation, it can be obtained that the terminal velocity decreased by 75.81% and the deployment time decreased by 72.37% compared with a given constant damping coefficients. Therefore, the proposed new type of rotary damper can reach a compromise with different performance utilizing an on-off control strategy.
Paper Details
Date Published: 6 March 2015
PDF: 10 pages
Proc. SPIE 9446, Ninth International Symposium on Precision Engineering Measurement and Instrumentation, 944648 (6 March 2015); doi: 10.1117/12.2181839
Published in SPIE Proceedings Vol. 9446:
Ninth International Symposium on Precision Engineering Measurement and Instrumentation
Junning Cui; Jiubin Tan; Xianfang Wen, Editor(s)
PDF: 10 pages
Proc. SPIE 9446, Ninth International Symposium on Precision Engineering Measurement and Instrumentation, 944648 (6 March 2015); doi: 10.1117/12.2181839
Show Author Affiliations
Published in SPIE Proceedings Vol. 9446:
Ninth International Symposium on Precision Engineering Measurement and Instrumentation
Junning Cui; Jiubin Tan; Xianfang Wen, Editor(s)
© SPIE. Terms of Use
