
Proceedings Paper
LBP and SIFT based facial expression recognitionFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
This study compares the performance of local binary patterns (LBP) and scale invariant feature transform (SIFT) with support vector machines (SVM) in automatic classification of discrete facial expressions. Facial expression recognition is a multiclass classification problem and seven classes; happiness, anger, sadness, disgust, surprise, fear and comtempt are classified. Using SIFT feature vectors and linear SVM, 93.1% mean accuracy is acquired on CK+ database. On the other hand, the performance of LBP-based classifier with linear SVM is reported on SFEW using strictly person independent (SPI) protocol. Seven-class mean accuracy on SFEW is 59.76%. Experiments on both databases showed that LBP features can be used in a fairly descriptive way if a good localization of facial points and partitioning strategy are followed.
Paper Details
Date Published: 14 February 2015
PDF: 5 pages
Proc. SPIE 9445, Seventh International Conference on Machine Vision (ICMV 2014), 94450A (14 February 2015); doi: 10.1117/12.2181505
Published in SPIE Proceedings Vol. 9445:
Seventh International Conference on Machine Vision (ICMV 2014)
Antanas Verikas; Branislav Vuksanovic; Petia Radeva; Jianhong Zhou, Editor(s)
PDF: 5 pages
Proc. SPIE 9445, Seventh International Conference on Machine Vision (ICMV 2014), 94450A (14 February 2015); doi: 10.1117/12.2181505
Show Author Affiliations
Omer Sumer, Istanbul Technical Univ. (Turkey)
Ece Olcay Gunes, Istanbul Technical Univ. (Turkey)
Published in SPIE Proceedings Vol. 9445:
Seventh International Conference on Machine Vision (ICMV 2014)
Antanas Verikas; Branislav Vuksanovic; Petia Radeva; Jianhong Zhou, Editor(s)
© SPIE. Terms of Use
