Share Email Print

Proceedings Paper

Development of high performance SWIR InGaAs focal plane array
Author(s): Richie Nagi; Jeremy Bregman; Genki Mizuno; Patrick Oduor; Robert Olah; Achyut K. Dutta; Nibir K. Dhar
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Banpil Photonics has developed a novel InGaAs based photodetector array for Short-Wave Infrared (SWIR) imaging, for the most demanding security, defense, and machine vision applications. These applications require low noise from both the detector and the readout integrated circuit arrays. In order to achieve high sensitivity, it is crucial to minimize the dark current generated by the photodiode array. This enables the sensor to function in extremely low light situations, which enables it to successfully exploit the benefits of the SWIR band. In addition to minimal dark current generation, it is essential to develop photodiode arrays with higher operating temperatures. This is critical for reducing the power consumption of the device, as less energy is spent in cooling down the focal plane array (in order to reduce the dark current). We at Banpil Photonics are designing, simulating, fabricating and testing SWIR InGaAs arrays, and have achieved low dark current density at room temperature. This paper describes Banpil’s development of the photodetector array. We also highlight the fabrication technique used to reduce the amount of dark current generated by the photodiode array, in particular the surface leakage current. This technique involves the deposition of strongly negatively doped semiconductor material in the area between the pixels. This process reduces the number of dangling bonds present on the edges of each pixel, which prevents electrons from being swept across the surface of the pixels. This in turn drastically reduces the amount of surface leakage current at each pixel, which is a major contributor towards the total dark current. We present the optical and electrical characterization data, as well as the analysis that illustrates the dark current mechanisms. Also highlighted are the challenges and potential opportunities for further reduction of dark current, while maintaining other parameters of the photodiode array, such as size, weight, temperature of peak performance (lowest dark current), and power consumption.

Paper Details

Date Published: 13 May 2015
PDF: 6 pages
Proc. SPIE 9481, Image Sensing Technologies: Materials, Devices, Systems, and Applications II, 948105 (13 May 2015);
Show Author Affiliations
Richie Nagi, Banpil Photonics, Inc. (United States)
Jeremy Bregman, Banpil Photonics, Inc. (United States)
Genki Mizuno, Banpil Photonics, Inc. (United States)
Patrick Oduor, Banpil Photonics, Inc. (United States)
Robert Olah, Banpil Photonics, Inc. (United States)
Achyut K. Dutta, Banpil Photonics, Inc. (United States)
Nibir K. Dhar, U.S. Army Night Vision & Electronic Sensors Directorate (United States)

Published in SPIE Proceedings Vol. 9481:
Image Sensing Technologies: Materials, Devices, Systems, and Applications II
Nibir K. Dhar; Achyut K. Dutta, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?