Share Email Print

Proceedings Paper

In situ visualization of dermal collagen dynamics during skin burn healing using second-harmonic-generation microscopy
Author(s): Takeshi Yasui; Eiji Hase; Ryosuke Tanaka; Shu-ichiro Fukushima; Tsutomu Araki
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Burn healing is a process to repair thermally damaged tissues. Although burn healing has many aspects, it is common for dynamics of collagen fiber, such as decomposition, production, or growth, to be closely related with burn healing. If such healing process can be visualized from the viewpoint of the collagen dynamics, one may obtain new findings regarding biological repairing mechanisms in the healing process. To this end, second-harmonic-generation (SHG) light will be an effective optical probe because of high selectivity and good image contrast to collagen molecules as well as high spatial resolution, optical three-dimensional (3D) sectioning, minimal invasiveness, deep penetration, the absence of interference from background light, and in situ measurement without additional staining. Furthermore, since SHG light arises from a non-centrosymmetric triple helix of three polypeptide chains in the collagen molecule, its intensity decreases and finally disappears when thermal denaturation caused by the skin burn changes the structure of this molecule to a centrosymmetric random coil. Therefore, optical assessment of skin burn has been investigated by SHG microscopy. In this paper, we applied SHG microscopy for in situ imaging of the healing process in animal skin burn and successfully visualized the decomposition, production, and growth of renewal collagen fibers as a series of time-lapse images in the same subject.

Paper Details

Date Published: 19 June 2015
PDF: 7 pages
Proc. SPIE 9531, Biophotonics South America, 95313U (19 June 2015); doi: 10.1117/12.2180895
Show Author Affiliations
Takeshi Yasui, Tokushima Univ. (Japan)
Osaka Univ. (Japan)
Eiji Hase, Tokushima Univ. (Japan)
Ryosuke Tanaka, Osaka Univ. (Japan)
Shu-ichiro Fukushima, Osaka Univ. (Japan)
Tsutomu Araki, Osaka Univ. (Japan)

Published in SPIE Proceedings Vol. 9531:
Biophotonics South America
Cristina Kurachi D.D.S.; Katarina Svanberg M.D.; Bruce J. Tromberg; Vanderlei Salvador Bagnato, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?