Share Email Print
cover

Proceedings Paper

From MEMS to macro-world: a micro-milling machined wideband vibration piezoelectric energy harvester
Author(s): J. Iannacci; G. Sordo
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this work, we discuss a novel mechanical resonator design for the realization of vibration Energy Harvester (EH) capable to deliver power levels in the mW range. The device overcomes the typical constraint of frequency narrowband operability of standard cantilevered EHs, by exploiting a circular-shaped resonator with an increased number of mechanical Degrees Of Freedom (DOFs), leading to several resonant modes in the range of vibrations of interest (i.e. multi-modal wideband EH). The device, named Four-Leaf Clover (FLC), is simulated in Ansys Worbench™, showing a significant number of resonant modes up to vibrations of around 2 kHz (modal eigenfrequencies analysis), and exhibiting levels of converted power up to a few mW at resonance (harmonic coupled-field analysis). The sole FLC mechanical structure is realized by micro-milling an Aluminum foil, while a cantilevered test structure also including PolyVinyliDene Fluoride (PVDF) film sheet is assembled in order to collect first experimental feedback on generated power levels. The first lab based tests show peak-to-peak voltages of several Volts when the cantilever is stimulated with a mechanical pulse. Further developments of this work will comprise the assembly of an FLC demonstrator with PVDF pads, and its experimental testing in order to validate the simulated results.

Paper Details

Date Published: 21 May 2015
PDF: 10 pages
Proc. SPIE 9517, Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems, 951705 (21 May 2015); doi: 10.1117/12.2180143
Show Author Affiliations
J. Iannacci, Fondazione Bruno Kessler (Italy)
G. Sordo, Fondazione Bruno Kessler (Italy)


Published in SPIE Proceedings Vol. 9517:
Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems
José Luis Sánchez-Rojas; Riccardo Brama, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray