Share Email Print

Proceedings Paper

Rotational analysis of birefringent crystal particles based on modified theory in optical tweezers
Author(s): Yong Wei; Yanying Zhu; Wenying Yao; Huan Pei
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In order to achieve high-precision, controllable rotation of uniaxial birefringent crystal particles, we study the principle of optical rotation due to the transfer of spin angular momentum from light to birefringent crystal particles. The interaction process between the beam and particles is affected by various factors existed actually, for instance: the reflection of beam on the crystal surface, laser power, the set of angle between the crystal optical axis and surface, radius, phase difference between the ordinary ray and extraordinary ray. According to the analysis of these factors, the theoretical model of optical rotation is reconstructed. The theoretical curves of calcium carbonate and silicon particles chosen as experimental material between the rotational frequency and the radius are simulated and calculated. The result shows that the rotation frequency is inversely proportional to the cube of radius, and compared the performance of modified model with traditional model. The birefringent particles are rotated by optical tweezers in the experiment, and rotation frequency is measured with the same laser power. According to the experimental results of optical rotation, the modified Friese theoretical model is proved to be the reasonably and excellence, in addition, the result shows the maximum frequency of calcium carbonate is 19.1Hz, and the maximum frequency of silicon particles is 11.5Hz. The rationality of our experiment is testified by compared with theoretical analysis. Our study has great directive significance to the design of optical driven micro-mechanical motor and the material selection of rotor.

Paper Details

Date Published: 13 April 2015
PDF: 6 pages
Proc. SPIE 9522, Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics 2014, Part II, 95220S (13 April 2015); doi: 10.1117/12.2179434
Show Author Affiliations
Yong Wei, Yanshan Univ. (China)
Yanying Zhu, Yanshan Univ. (China)
Wenying Yao, Yanshan Univ. (China)
Huan Pei, Yanshan Univ. (China)

Published in SPIE Proceedings Vol. 9522:
Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics 2014, Part II
Xiangwan Du; Jennifer Liu; Dianyuan Fan; Jialing Le; Yueguang Lv; Jianquan Yao; Weimin Bao; Lijun Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?