
Proceedings Paper
Abnormal behaviors detection using particle motion modelFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Human abnormal behaviors detection is one of the most challenging tasks in the video surveillance for the public
security control. Interaction Energy Potential model is an effective and competitive method published recently to detect
abnormal behaviors, but their model of abnormal behaviors is not accurate enough, so it has some limitations. In order to
solve this problem, we propose a novel Particle Motion model. Firstly, we extract the foreground to improve the
accuracy of interest points detection since the complex background usually degrade the effectiveness of interest points
detection largely. Secondly, we detect the interest points using the graphics features. Here, the movement of each human
target can be represented by the movements of detected interest points of the target. Then, we track these interest points
in videos to record their positions and velocities. In this way, the velocity angles, position angles and distance between
each two points can be calculated. Finally, we proposed a Particle Motion model to calculate the eigenvalue of each
frame. An adaptive threshold method is proposed to detect abnormal behaviors. Experimental results on the BEHAVE
dataset and online videos show that our method could detect fight and robbery events effectively and has a promising
performance.
Paper Details
Date Published: 4 March 2015
PDF: 5 pages
Proc. SPIE 9443, Sixth International Conference on Graphic and Image Processing (ICGIP 2014), 94430J (4 March 2015); doi: 10.1117/12.2179331
Published in SPIE Proceedings Vol. 9443:
Sixth International Conference on Graphic and Image Processing (ICGIP 2014)
Yulin Wang; Xudong Jiang; David Zhang, Editor(s)
PDF: 5 pages
Proc. SPIE 9443, Sixth International Conference on Graphic and Image Processing (ICGIP 2014), 94430J (4 March 2015); doi: 10.1117/12.2179331
Show Author Affiliations
Yutao Chen, Beihang Univ. (China)
Hong Zhang, Beihang Univ. (China)
Feiyang Cheng, Beihang Univ. (China)
Hong Zhang, Beihang Univ. (China)
Feiyang Cheng, Beihang Univ. (China)
Published in SPIE Proceedings Vol. 9443:
Sixth International Conference on Graphic and Image Processing (ICGIP 2014)
Yulin Wang; Xudong Jiang; David Zhang, Editor(s)
© SPIE. Terms of Use
