Share Email Print

Proceedings Paper

Radiometric calibration of digital cameras using Gaussian processes
Author(s): Martin Schall; Michael Grunwald; Georg Umlauf; Matthias O. Franz
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Digital cameras are subject to physical, electronic and optic effects that result in errors and noise in the image. These effects include for example a temperature dependent dark current, read noise, optical vignetting or different sensitivities of individual pixels. The task of a radiometric calibration is to reduce these errors in the image and thus improve the quality of the overall application. In this work we present an algorithm for radiometric calibration based on Gaussian processes. Gaussian processes are a regression method widely used in machine learning that is particularly useful in our context. Then Gaussian process regression is used to learn a temperature and exposure time dependent mapping from observed gray-scale values to true light intensities for each pixel. Regression models based on the characteristics of single pixels suffer from excessively high runtime and thus are unsuitable for many practical applications. In contrast, a single regression model for an entire image with high spatial resolution leads to a low quality radiometric calibration, which also limits its practical use. The proposed algorithm is predicated on a partitioning of the pixels such that each pixel partition can be represented by one single regression model without quality loss. Partitioning is done by extracting features from the characteristic of each pixel and using them for lexicographic sorting. Splitting the sorted data into partitions with equal size yields the final partitions, each of which is represented by the partition centers. An individual Gaussian process regression and model selection is done for each partition. Calibration is performed by interpolating the gray-scale value of each pixel with the regression model of the respective partition. The experimental comparison of the proposed approach to classical flat field calibration shows a consistently higher reconstruction quality for the same overall number of calibration frames.

Paper Details

Date Published: 5 May 2015
PDF: 10 pages
Proc. SPIE 9506, Optical Sensors 2015, 950604 (5 May 2015); doi: 10.1117/12.2178601
Show Author Affiliations
Martin Schall, Hochschule Konstanz (Germany)
Michael Grunwald, Univ. of Applied Sciences Konstanz (Germany)
Georg Umlauf, Univ. of Applied Sciences Konstanz (Germany)
Matthias O. Franz, Hochschule Konstanz (Germany)

Published in SPIE Proceedings Vol. 9506:
Optical Sensors 2015
Francesco Baldini; Jiri Homola; Robert A. Lieberman, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?