Share Email Print

Proceedings Paper

Controlling photon emission from silicon for photonic applications
Author(s): Seref Kalem
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The importance of a photon source that would be compatible with silicon circuitry is crucial for data communication networks. A photon source with energies ranging from UV to near infrared can be activated in Si as originationg from defects related to dislocations, vacancies, strain induced band edge transitions and quantum confinement effects. Using an etching method developed in this work, one can also enhance selectively the UV-VIS, band edge emission and emissions at telecom wavelengths, which are tunable depending on surface treatment. Deuterium D2O etching favors near infrared emission with a characteristic single peak at 1320 nm at room temperature. The result offers an exciting solution to advanced microelectronics The method involves the treatment of Si surface by deuterium Deuterium containing acid vapor, resulting in a layer that emits at 1320 nm. Etching without deuterium, a strong band edge emission can be induced at 1150 nm or an emission at 1550 nm can be created depending on the engineered surface structure of silicon. Schottky diodes fabricated on treated surfaces exhibit a strong rectifying characteristics in both cases.

Paper Details

Date Published: 13 March 2015
PDF: 8 pages
Proc. SPIE 9364, Oxide-based Materials and Devices VI, 93641P (13 March 2015); doi: 10.1117/12.2177640
Show Author Affiliations
Seref Kalem, TUBITAK-BILGEM (Turkey)

Published in SPIE Proceedings Vol. 9364:
Oxide-based Materials and Devices VI
Ferechteh H. Teherani; David C. Look; David J. Rogers, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?