Share Email Print
cover

Proceedings Paper

Advanced shortwave infrared and Raman hyperspectral sensors for homeland security and law enforcement operations
Author(s): Oksana Klueva; Matthew P. Nelson; Charles W. Gardner; Nathaniel R. Gomer
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Proliferation of chemical and explosive threats as well as illicit drugs continues to be an escalating danger to civilian and military personnel. Conventional means of detecting and identifying hazardous materials often require the use of reagents and/or physical sampling, which is a time-consuming, costly and often dangerous process. Stand-off detection allows the operator to detect threat residues from a safer distance minimizing danger to people and equipment. Current fielded technologies for standoff detection of chemical and explosive threats are challenged by low area search rates, poor targeting efficiency, lack of sensitivity and specificity or use of costly and potentially unsafe equipment such as lasers. A demand exists for stand-off systems that are fast, safe, reliable and user-friendly. To address this need, ChemImage Sensor Systems™ (CISS) has developed reagent-less, non-contact, non-destructive sensors for the real-time detection of hazardous materials based on widefield shortwave infrared (SWIR) and Raman hyperspectral imaging (HSI). Hyperspectral imaging enables automated target detection displayed in the form of image making result analysis intuitive and user-friendly. Application of the CISS’ SWIR-HSI and Raman sensing technologies to Homeland Security and Law Enforcement for standoff detection of homemade explosives and illicit drugs and their precursors in vehicle and personnel checkpoints is discussed. Sensing technologies include a portable, robot-mounted and standalone variants of the technology. Test data is shown that supports the use of SWIR and Raman HSI for explosive and drug screening at checkpoints as well as screening for explosives and drugs at suspected clandestine manufacturing facilities.

Paper Details

Date Published: 19 May 2015
PDF: 9 pages
Proc. SPIE 9455, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVI, 94550O (19 May 2015); doi: 10.1117/12.2177150
Show Author Affiliations
Oksana Klueva, ChemImage Sensor Systems (United States)
Matthew P. Nelson, ChemImage Sensor Systems (United States)
Charles W. Gardner, ChemImage Sensor Systems (United States)
Nathaniel R. Gomer, ChemImage Sensor Systems (United States)


Published in SPIE Proceedings Vol. 9455:
Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVI
Augustus Way Fountain III, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray