Share Email Print

Proceedings Paper

Characterization of radar cross section of carbon fiber composite materials
Author(s): Elliot J. Riley; Erik H. Lenzing; Ram M. Narayanan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Carbon fiber composite (CFC) materials have been used for many structural applications for decades. Their electromagnetic properties are also of great interest and are being quantified by recent research. This research explores shielding effectiveness, antenna design, conductivity, reflection, and absorption properties. The work in this paper specifically characterizes the radar cross section (RCS) of CFC structures. Various CFC planar samples were created using a wet layup method and vacuum bagging techniques. These samples were then placed in an anechoic chamber and their RCS values were measured at normal incidence. These measured values were compared to those of aluminum samples made into the same shape as the CFC samples. All of the measurements were made over 7 - 12 GHz frequency range. The RCS of the CFC samples show some interesting results. The fiber direction in the CFC samples had great influence on the RCS. Theories and reasoning for the results are presented and discussed.

Paper Details

Date Published: 21 May 2015
PDF: 8 pages
Proc. SPIE 9461, Radar Sensor Technology XIX; and Active and Passive Signatures VI, 946103 (21 May 2015); doi: 10.1117/12.2176750
Show Author Affiliations
Elliot J. Riley, The Pennsylvania State Univ. (United States)
Erik H. Lenzing, The Pennsylvania State Univ. (United States)
Ram M. Narayanan, The Pennsylvania State Univ. (United States)

Published in SPIE Proceedings Vol. 9461:
Radar Sensor Technology XIX; and Active and Passive Signatures VI
G. Charmaine Gilbreath; Kenneth I. Ranney; Armin Doerry; Chadwick Todd Hawley, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?