Share Email Print

Proceedings Paper

Optimization of 1.3-um etched-well surface-emitting laser design
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A self-consistent analytical thermal-electrical model is developed to simulate thermal properties of etched-well InGaAsP/InP buried-heterostructure VCSELs with dielectric mirrors. The model is then used to investigate the influence of various design parameters on device performance. In particular, we examine the effects of varying the P-cladding doping level, active-region-, mirror-, and well-diameters, solder material, and mirror materials. We find that the dielectric mirrors are the most critical elements of the device. To increase the output power/operation temperature of the device, both mirrors must have high thermal conductivity and minimal scattering loss.

Paper Details

Date Published: 19 June 1995
PDF: 12 pages
Proc. SPIE 2399, Physics and Simulation of Optoelectronic Devices III, (19 June 1995); doi: 10.1117/12.212514
Show Author Affiliations
Marek Osinski, Univ. of New Mexico (United States)
Wlodzimierz Nakwaski, Univ. of New Mexico (United States)

Published in SPIE Proceedings Vol. 2399:
Physics and Simulation of Optoelectronic Devices III
Marek Osinski; Weng W. Chow, Editor(s)

© SPIE. Terms of Use
Back to Top