Share Email Print

Proceedings Paper

Thermal characteristics of CO2, Argon, and KTP (Nd:YAG) ablated bone
Author(s): Brian Jet-Fei Wong M.D.; Joseph Neev; Jon P. Lee; George T. Hashisaki M.D.; Michael W. Berns
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

CO2 (10.6 micrometers ), Argon (514 nm), and KTP (Nd:YAG) (532 nm) are the lasers of choice for the stapedotomy operation. While each of these lasers is effective in surgically treating otosclerosis, few studies exist which compare the relative deleterious effects of these lasers in a model that is relevant to clinical practice and also based on the physics of laser- tissue interactions. This study focuses on surface temperature changes that occur in otic capsule, cortical, and lamellar bone when treated with clinical laser energy densities. Fresh porcine otic capsule, cortical, and lamellar bone were micromachined to a uniform thickness of 0.8 mm. A microspot manipulator was used for CO2, testing both continuous wave (CW) and super-pulse (SP) modes. A focused lens based system was used for argon, and a micro fiber was used for KTP. A Hg-Cd-Te infrared imaging system was used to measure temperature. Hot spot temperatures were recorded, as well as the full width-half maximum of the thermal disturbance at that time. The time for the hot spot to return to ambient temperature was also recorded. With visible wavelengths, the experiments were performed in the presence and absence of an initiator (black ink). Temperature elevations with CW CO2 were markedly elevated relative to SP mode. The CW irradiated tissue also required longer to cool. In both KTP and argon treated bone, minimal surface temperature elevation was recorded in the absence of an initiator. No surface modification was observed by light microscopy. In contrast, the addition of an initiator resulted in marked temperature elevations and significant surface carbonization with these visible wavelengths. The mechanisms of ablation and thermal conduction are discussed along with the clinical relevance of these findings.

Paper Details

Date Published: 12 May 1995
PDF: 11 pages
Proc. SPIE 2395, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, (12 May 1995); doi: 10.1117/12.209110
Show Author Affiliations
Brian Jet-Fei Wong M.D., Beckman Laser Institute and Medical Clinic and Univ. of California/Irvine (United States)
Joseph Neev, Beckman Laser Institute and Medical Clinic (United States)
Jon P. Lee, Beckman Laser Institute and Medical Clinic (United States)
George T. Hashisaki M.D., Univ. of Virginia Health Sciences Ctr. (United States)
Michael W. Berns, Beckman Laser Institute and Medical Clinic (United States)

Published in SPIE Proceedings Vol. 2395:
Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V
R. Rox Anderson M.D.; Graham M. Watson M.D.; Rudolf W. Steiner; Douglas E. Johnson M.D.; Stanley M. Shapshay M.D.; Michail M. Pankratov; George S. Abela M.D.; Lawrence S. Bass M.D.; John V. White M.D.; Rodney A. White M.D.; Kenneth Eugene Bartels D.V.M.; Lloyd P. Tate V.D.M.; C. Thomas Vangsness M.D., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?