Share Email Print

Proceedings Paper

Bending and twisting vibration control of a cantilever plate via electromechanical surface damping
Author(s): Hany Ghoneim
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The electromechanical surface damping technique (EMSD) is applied to suppress the bending and twisting peak vibration amplitudes of a cantilever plate. The technique is a combination of the constrained layer damping (CLD) and the shunted piezoelectric methods in which the constraining layer of the CLD is replaced by a shunted piezoelectric ceramic. The frequency responses, to a white noise random base excitation, of the EMSD-treated plate at the vicinity of the first and second bending and twisting resonant frequencies are determined and compared with the corresponding responses of the CLD-treatment. It is shown that, in general, the EMSD treatment provides more suppression of the bending and twisting peak vibration amplitudes than the conventional CLD treatment. The EMSD treatment, however, is more effective at higher frequencies and lower temperatures, which suggests that the EMSD method can be applied to extend the effective range of frequencies and/or temperatures of the conventional CLD method. The work presented is primarily analytical, however crude and preliminary experimental results are presented in order to demonstrate the feasibility of the EMSD technique.

Paper Details

Date Published: 5 May 1995
PDF: 12 pages
Proc. SPIE 2445, Smart Structures and Materials 1995: Passive Damping, (5 May 1995); doi: 10.1117/12.208907
Show Author Affiliations
Hany Ghoneim, Rochester Institute of Technology (United States)

Published in SPIE Proceedings Vol. 2445:
Smart Structures and Materials 1995: Passive Damping
Conor D. Johnson, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?