Share Email Print

Proceedings Paper

A rapid Look-Locker imaging sequence for quantitative tissue oximetry
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Tissue oximetry studies using magnetic resonance imaging are increasingly contributing to advances in the imaging and treatment of cancer. The non-invasive measurement of tissue oxygenation (pO2) may facilitate a better understanding of the pathophysiology and prognosis of diseases, particularly in the assessment of the extensive hypoxic regions associated with cancerous lesions. The availability of tumor hypoxia maps could help quantify and predict tumor response to intervention and therapy. The PISTOL (Proton Imaging of Siloxanes to map Tissue Oxygenation Levels) oximetry technique maps the T1 of administered hexamethyldisiloxane (HMDSO), an 1H NMR pO2 reporter molecule in about 3 ½ min. This allows us to subsequently monitor static and dynamic changes in the tissue pO2 (in response to intervention) at various locations due to the linear relationship between 1/T1 and pO2. In this work, an HMDSO-selective Look-Locker imaging sequence with EPI readout has been developed to enable faster PISTOL acquisitions. The new sequence incorporates the fast Look-Locker measurement method to enable T1, and hence, pO2 mapping of HMDSO in under one minute. To demonstrate the application of this pulse sequence in vivo, 50 μL of neat HMDSO was administered to the thigh muscle of a healthy rat (Fischer F344, n=4). Dynamic changes in the mean pO2 of the thigh muscle were measured using both PISTOL and the developed LL oximetry sequence in response to oxygen challenge and compared. Results demonstrate the efficacy of the new sequence in rapidly mapping the pO2 changes, leading to advances in fast quantitative 1H MR oximetry.

Paper Details

Date Published: 19 March 2015
PDF: 10 pages
Proc. SPIE 9417, Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging, 94170F (19 March 2015); doi: 10.1117/12.2084009
Show Author Affiliations
Rohini Vidya Shankar, Arizona State Univ. (United States)
Vikram D. Kodibagkar, Arizona State Univ. (United States)

Published in SPIE Proceedings Vol. 9417:
Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging
Barjor Gimi; Robert C. Molthen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?