Share Email Print

Proceedings Paper

Hyperspectral imaging utility for transportation systems
Author(s): Raj Bridgelall; J. Bruce Rafert; Denver Tolliver
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The global transportation system is massive, open, and dynamic. Existing performance and condition assessments of the complex interacting networks of roadways, bridges, railroads, pipelines, waterways, airways, and intermodal ports are expensive. Hyperspectral imaging is an emerging remote sensing technique for the non-destructive evaluation of multimodal transportation infrastructure. Unlike panchromatic, color, and infrared imaging, each layer of a hyperspectral image pixel records reflectance intensity from one of dozens or hundreds of relatively narrow wavelength bands that span a broad range of the electromagnetic spectrum. Hence, every pixel of a hyperspectral scene provides a unique spectral signature that offers new opportunities for informed decision-making in transportation systems development, operations, and maintenance. Spaceborne systems capture images of vast areas in a short period but provide lower spatial resolution than airborne systems. Practitioners use manned aircraft to achieve higher spatial and spectral resolution, but at the price of custom missions and narrow focus. The rapid size and cost reduction of unmanned aircraft systems promise a third alternative that offers hybrid benefits at affordable prices by conducting multiple parallel missions. This research formulates a theoretical framework for a pushbroom type of hyperspectral imaging system on each type of data acquisition platform. The study then applies the framework to assess the relative potential utility of hyperspectral imaging for previously proposed remote sensing applications in transportation. The authors also introduce and suggest new potential applications of hyperspectral imaging in transportation asset management, network performance evaluation, and risk assessments to enable effective and objective decision- and policy-making.

Paper Details

Date Published: 27 March 2015
PDF: 14 pages
Proc. SPIE 9435, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015, 943522 (27 March 2015); doi: 10.1117/12.2083957
Show Author Affiliations
Raj Bridgelall, North Dakota State Univ. (United States)
J. Bruce Rafert, North Dakota State Univ. (United States)
Denver Tolliver, North Dakota State Univ. (United States)

Published in SPIE Proceedings Vol. 9435:
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015
Jerome P. Lynch, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?