Share Email Print

Proceedings Paper

The effect of elastic modulus on ablation catheter contact area
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrodetissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well.

In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel[1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.

Paper Details

Date Published: 18 March 2015
PDF: 8 pages
Proc. SPIE 9415, Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling, 941506 (18 March 2015); doi: 10.1117/12.2083122
Show Author Affiliations
Jon J. Camp, Mayo Clinic (United States)
Cristian A. Linte, Rochester Institute of Technology (United States)
Maryam E. Rettmann, Mayo Clinic (United States)
Deyu Sun, Mayo Clinic (United States)
Douglas L. Packer, Mayo Clinic (United States)
Richard A. Robb, Mayo Clinic (United States)
David R. Holmes III, Mayo Clinic (United States)

Published in SPIE Proceedings Vol. 9415:
Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling
Robert J. Webster III; Ziv R. Yaniv, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?