
Proceedings Paper
Theoretical and experimental comparison of image signal and noise for dual-energy subtraction angiography and conventional x-ray angiographyFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
Cardiovascular disease is currently the leading cause of mortality worldwide. Digital subtraction angiography
(DSA) is widely used to enhance the visibility of small vessels and vasculature obscurred by overlying bone and lung fields
by subtracting a mask and contrast image. However, motion between these mask and contrast images can introduce artifacts
that can render a study non-diagnostic. This makes DSA particularly unsuccessful for cardiac imaging. A method called
dual-energy, or energy subtraction angiography (ESA), was proposed in the past as an alternative for vascular imaging,
however it was not pursued because experimental results suggested that image quality was deemed as poor and inferior to
DSA. Image quality for angiography comes down to iodine signal and noise. In this paper we investigate the fundamental
iodine signal and noise analysis of ESA and compare it to DSA.
Method: We developed a polyenergetic and monoenergetic theoretical model for iodine signal and noise for both
ESA and DSA. We validated our polyenergetic model by experiment where ESA and DSA images of a vascular phantom
were acquired using an x-ray system with a flat panel CsI Xmaru1215CF-MPTM (Rayence Co., Ltd., Republic of Korea)
detector. For ESA low and high applied tube voltages of 50 kV and 120 kV (2.5 mmCu), respectively, and for DSA the
applied tube voltage was 80 kV. Iodine signal-to-noise ratio (SNR) per entrance exposure was calculated for each iodine
concentration for both ESA and DSA.
Results: Our measured iodine SNR agreed well with theoretical calculations. Iodine SNR for ESA was relatively
higher than DSA for low iodine mass loadings, and as iodine mass loading increases iodine SNR decreases.
Conclusions: We have developed a model for iodine SNR for both DSA and ESA. Our model was validated with
experiment and showed excellent agreement. We have shown that there is potential for obtaining iodine-specific images
using ESA that are similar to DSA.
Paper Details
Date Published: 18 March 2015
PDF: 14 pages
Proc. SPIE 9412, Medical Imaging 2015: Physics of Medical Imaging, 941219 (18 March 2015); doi: 10.1117/12.2082724
Published in SPIE Proceedings Vol. 9412:
Medical Imaging 2015: Physics of Medical Imaging
Christoph Hoeschen; Despina Kontos, Editor(s)
PDF: 14 pages
Proc. SPIE 9412, Medical Imaging 2015: Physics of Medical Imaging, 941219 (18 March 2015); doi: 10.1117/12.2082724
Show Author Affiliations
Christiane S. Burton, Robarts Research Institute, The Univ. of Western Ontario (Canada)
John R. Mayo, Vancouver General Hospital (Canada)
Univ. of British Columbia (Canada)
John R. Mayo, Vancouver General Hospital (Canada)
Univ. of British Columbia (Canada)
I. A. Cunningham, Robarts Research Institute, The Univ. of Western Ontario (Canada)
Published in SPIE Proceedings Vol. 9412:
Medical Imaging 2015: Physics of Medical Imaging
Christoph Hoeschen; Despina Kontos, Editor(s)
© SPIE. Terms of Use
