
Proceedings Paper
A comparative study of two prediction models for brain tumor progressionFormat | Member Price | Non-Member Price |
---|---|---|
$17.00 | $21.00 |
Paper Abstract
MR diffusion tensor imaging (DTI) technique together with traditional T1 or T2 weighted MRI scans supplies rich information sources for brain cancer diagnoses. These images form large-scale, high-dimensional data sets. Due to the fact that significant correlations exist among these images, we assume low-dimensional geometry data structures (manifolds) are embedded in the high-dimensional space. Those manifolds might be hidden from radiologists because it is challenging for human experts to interpret high-dimensional data. Identification of the manifold is a critical step for successfully analyzing multimodal MR images.
We have developed various manifold learning algorithms (Tran et al. 2011; Tran et al. 2013) for medical image analysis. This paper presents a comparative study of an incremental manifold learning scheme (Tran. et al. 2013) versus the deep learning model (Hinton et al. 2006) in the application of brain tumor progression prediction. The incremental manifold learning is a variant of manifold learning algorithm to handle large-scale datasets in which a representative subset of original data is sampled first to construct a manifold skeleton and remaining data points are then inserted into the skeleton by following their local geometry. The incremental manifold learning algorithm aims at mitigating the computational burden associated with traditional manifold learning methods for large-scale datasets. Deep learning is a recently developed multilayer perceptron model that has achieved start-of-the-art performances in many applications. A recent technique named "Dropout" can further boost the deep model by preventing weight coadaptation to avoid over-fitting (Hinton et al. 2012).
We applied the two models on multiple MRI scans from four brain tumor patients to predict tumor progression and compared the performances of the two models in terms of average prediction accuracy, sensitivity, specificity and precision. The quantitative performance metrics were calculated as average over the four patients. Experimental results show that both the manifold learning and deep neural network models produced better results compared to using raw data and principle component analysis (PCA), and the deep learning model is a better method than manifold learning on this data set. The averaged sensitivity and specificity by deep learning are comparable with these by the manifold learning approach while its precision is considerably higher. This means that the predicted abnormal points by deep learning are more likely to correspond to the actual progression region.
Paper Details
Date Published: 16 March 2015
PDF: 7 pages
Proc. SPIE 9399, Image Processing: Algorithms and Systems XIII, 93990W (16 March 2015); doi: 10.1117/12.2082645
Published in SPIE Proceedings Vol. 9399:
Image Processing: Algorithms and Systems XIII
Karen O. Egiazarian; Sos S. Agaian; Atanas P. Gotchev, Editor(s)
PDF: 7 pages
Proc. SPIE 9399, Image Processing: Algorithms and Systems XIII, 93990W (16 March 2015); doi: 10.1117/12.2082645
Show Author Affiliations
Deqi Zhou, Princess Anne High School (United States)
Loc Tran, Old Dominion Univ. (United States)
Loc Tran, Old Dominion Univ. (United States)
Jihong Wang, The Univ. of Texas MD Anderson Cancer Ctr. (United States)
Jiang Li, Old Dominion Univ. (United States)
Guilin Univ. of Technology (China)
Jiang Li, Old Dominion Univ. (United States)
Guilin Univ. of Technology (China)
Published in SPIE Proceedings Vol. 9399:
Image Processing: Algorithms and Systems XIII
Karen O. Egiazarian; Sos S. Agaian; Atanas P. Gotchev, Editor(s)
© SPIE. Terms of Use
