Share Email Print

Proceedings Paper

Electronic cleansing for dual-energy CT colonography based on material decomposition and virtual monochromatic imaging
Author(s): Rie Tachibana; Janne J. Näppi; Se Hyung Kim; Hiroyuki Yoshida
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

CT colonography (CTC) uses orally administered fecal-tagging agents to enhance retained fluid and feces that would otherwise obscure or imitate polyps on CTC images. To visualize the complete region of colon without residual materials, electronic cleansing (EC) can be used to perform virtual subtraction of the tagged materials from CTC images. However, current EC methods produce subtraction artifacts and they can fail to subtract unclearly tagged feces. We developed a novel multi-material EC (MUMA-EC) method that uses dual-energy CTC (DE-CTC) and machine-learning methods to improve the performance of EC. In our method, material decomposition is performed to calculate wateriodine decomposition images and virtual monochromatic (VIM) images. Using the images, a random forest classifier is used to label the regions of lumen air, soft tissue, fecal tagging, and their partial-volume boundaries. The electronically cleansed images are synthesized from the multi-material and VIM image volumes. For pilot evaluation, we acquired the clinical DE-CTC data of 7 patients. Preliminary results suggest that the proposed MUMA-EC method is effective and that it minimizes the three types of image artifacts that were present in previous EC methods.

Paper Details

Date Published: 20 March 2015
PDF: 7 pages
Proc. SPIE 9414, Medical Imaging 2015: Computer-Aided Diagnosis, 94140Q (20 March 2015); doi: 10.1117/12.2082375
Show Author Affiliations
Rie Tachibana, Massachusetts General Hospital (United States)
Harvard Medical School (United States)
Janne J. Näppi, Massachusetts General Hospital (United States)
Harvard Medical School (United States)
Se Hyung Kim, Seoul National Univ. Hospital (Korea, Republic of)
Hiroyuki Yoshida, Massachusetts General Hospital (United States)
Harvard Medical School (United States)

Published in SPIE Proceedings Vol. 9414:
Medical Imaging 2015: Computer-Aided Diagnosis
Lubomir M. Hadjiiski; Georgia D. Tourassi, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?