Share Email Print
cover

Proceedings Paper

Automated pipeline to analyze non-contact infrared images of the paraventricular nucleus specific leptin receptor knock-out mouse model
Author(s): Myriam Diaz Martinez; Masoud Ghamari-Langroudi; Aliya Gifford; Roger Cone; E. Brian Welch
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Evidence of leptin resistance is indicated by elevated leptin levels together with other hallmarks of obesity such as a defect in energy homeostasis.1 As obesity is an increasing epidemic in the US, the investigation of mechanisms by which leptin resistance has a pathophysiological impact on energy is an intensive field of research.2 However, the manner in which leptin resistance contributes to the dysregulation of energy, specifically thermoregulation,3 is not known. The aim of this study was to investigate whether the leptin receptor expressed in paraventricular nucleus (PVN) neurons plays a role in thermoregulation at different temperatures. Non-contact infrared (NCIR) thermometry was employed to measure surface body temperature (SBT) of nonanesthetized mice with a specific deletion of the leptin receptor in the PVN after exposure to room (25 °C) and cold (4 °C) temperature. Dorsal side infrared images of wild type (LepRwtwt/sim1-Cre), heterozygous (LepRfloxwt/sim1-Cre) and knock-out (LepRfloxflox/sim1-Cre) mice were collected. Images were input to an automated post-processing pipeline developed in MATLAB to calculate average and maximum SBTs. Linear regression was used to evaluate the relationship between sex, cold exposure and leptin genotype with SBT measurements. Findings indicate that average SBT has a negative relationship to the LepRfloxflox/sim1-Cre genotype, the female sex and cold exposure. However, max SBT is affected by the LepRfloxflox/sim1-Cre genotype and the female sex. In conclusion this data suggests that leptin within the PVN may have a neuroendocrine role in thermoregulation and that NCIR thermometry combined with an automated imaging-processing pipeline is a promising approach to determine SBT in non-anesthetized mice.

Paper Details

Date Published: 17 March 2015
PDF: 7 pages
Proc. SPIE 9417, Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging, 94172I (17 March 2015); doi: 10.1117/12.2082102
Show Author Affiliations
Myriam Diaz Martinez, Vanderbilt Univ. (United States)
Masoud Ghamari-Langroudi, Vanderbilt Univ. Medical Ctr. (United States)
Aliya Gifford, Vanderbilt Univ. (United States)
Roger Cone, Vanderbilt Univ. Medical Ctr. (United States)
E. Brian Welch, Vanderbilt Univ. (United States)


Published in SPIE Proceedings Vol. 9417:
Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging
Barjor Gimi; Robert C. Molthen, Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray